Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
2021 International Conference on Information Technology, ICIT 2021 ; : 296-301, 2021.
Article in English | Scopus | ID: covidwho-1360413

ABSTRACT

CNN-based transfer learning method plays a significant role in the detection of various objects such as cars, dogs, motorcycles, face and human detection in nighttime images by using visible light camera sensors. This method mainly depends on the images captured by cameras in order to detect the mentioned objects in a variety of environments based on convolutional neural networks (CNNs). In this study, we utilized the same method to detect coronavirus phenomena by using chest X-ray images that have been collected from three different open-source datasets with the aim of rapid detection of the infected patients and speed up the diagnostic process. We used one of the deep learning architectures in a Transfer Learning mode and modified its final layers to adapt to the number of classes in our investigation. The deep learning architecture that we used for the purpose of COVID-19 detection from X-ray images is a CNN designed to detect human in nighttime. We also modified the CNN architecture in three different scenarios named (Model 1, Model 2 and Model 3) in order to improve the classification results. Compared to model one and two, the result improved in model three and the number of misclassified cases reduced particularly in detecting Abnormal and COVID-19 cases. Although our CNN-based method shows high performance in COVID-19 detection, CNN decisions should not to be taken into consideration until clinical tests confirms symptoms of the infected patients. © 2021 IEEE.

2.
3rd International Conference on Advanced Science and Engineering, ICOASE 2020 ; : 69-73, 2020.
Article in English | Scopus | ID: covidwho-1276450

ABSTRACT

The global spread of the COVID-19 is a continuously evolving situation and it is still a major risk on the health of people around the world. A huge number of people are infected by this deadly virus and the number is still getting increased day by day. At this time, no specific vaccines or treatments of COVID-19 are found. Numerous ways are offered to detect COVID-19 such as swab test, CDC and RT-PCR tests. All of them can detect corona virus in different ways but they are not recommended by the reason of their limited availability, inaccurate results, high false-negative rate predicates, high cost and time consuming. Hence, medical radiography and Computer Tomography (CT) images were suggested as the next best alternative of RT -PCR and other tests for detecting Covid-19 cases. Recent studies found that patients with COVID-19 cases are present abnormalities in chest X-Ray images. Motivated by this, many researchers propose deep learning systems for COVID-19 detection. Although, these developed AI systems have shown quite promising results in terms of accuracy, they are closed source and unavailable to the research community. Therefore, in the present work, we introduced a deep convolutional neural network design (SAARSNet) designed to detect COVID-19 cases from chest X-Ray images. 1292 X-Ray images have been used to train and test the proposed model. the images have been collected from two open-source datasets. The input images are progressively resized into (220 by 150 by 3) in order to decrease the training time of the system and improve the performance of the SAARSNet architecture. Furthermore, we also investigate how SAARSNet makes predictions under three different scenarios with the aim of distinguishing COVID-19 class from both Normal and Abnormal classes as well as gaining deeper perceptions into critical factors related to COVID-19 cases. We also used the confusion metrics for evaluating the performance of SAARSNet CNN in an attempt to measure the true and false identifications of the classes from the tested images. With the proposed architecture promising results has been achieved in all of the three different scenarios. Although, there are some misclassified cases of COVID-19, the corresponding performance was best in detecting both Normal and Abnormal cases correctly. Furthermore, in the three classes scenario, normal class has been achieved 100% positive predictive value while optimistic results have been investigated in detecting COVID-19 and abnormal classes. © 2020 IEEE.

SELECTION OF CITATIONS
SEARCH DETAIL